Region of Convergence (ROC)

Region of Convergence (ROC) for Laplace Transform

-The s-plane refers to the domain where all the possible values of $H(s)$ occur.
-If the polynomial order is 2 with real poles and zeros, the positions of the poles and zeros in the s-plane is shown Figure 1(a).
-Similar example for complex poles and zeroes are shown in Figure 1(b).
-For causal systems, the system is stable if the poles are on the right hand side of the s-plane.

ROC

Differential Solution and Transfer Function

- Many physical phenomena can be defined as differential equation

$$
\frac{d^{2}}{d t^{2}} y(t)+a(1) \frac{d}{d t} y(t)+a(2) y(t)=x(t)
$$

where $y(t)$ is the output and $x(t)$ is the input. The Laplace transform is one way of solving the relationship between $y(t)$ and $x(t)$.

$$
s^{2} Y(s)+a(1) s Y(s)+a(2) Y(s)=X(s)
$$

- The transfer function of the system obtained by taking the ratio of $Y(s)$ and $X(s)$ is:

$$
H(s)=\frac{Y(s)}{X(s)}=\frac{1}{s^{2}+a(1) s+a(2)}
$$

-For a more general case, the transfer function is in the form of:

$$
H(s)=\frac{b(0) s^{N}+b(1) s^{N-1}+b(2) s^{N-2}+\ldots \ldots+b(N)}{s^{N}+a(1) s^{N-1}+a(2) s^{N-2}+\ldots \ldots+a(N)}=\frac{\sum_{n=0}^{N} b(n) s^{(N-n)}}{\sum_{n=0}^{N} a(n) s^{(N-n)}}
$$

where N is the polynomial order. The transfer function when factorized in terms of its roots is:

$$
H(s)=\frac{(s+\beta(0))(s+\beta(1)) \ldots \ldots(s+\beta(N))}{(s+\alpha(0))(s+\alpha(1)) \ldots \ldots(s+\alpha(N))}=\frac{\prod_{n=0}^{N}(s+\beta(n))}{\prod_{n=0}^{N}(s+\alpha(n))}
$$

-The roots in the numerator $-\beta(0),-\beta(1) \ldots-\beta(N)$ are referred as the zeros while the roots in the denominator $-\alpha(0),-\alpha(1) \ldots-\alpha(N)$ are the poles.

Inverse Laplace Transform

- Definition:

$$
x(t)=\frac{1}{2 \pi j} \int_{\sigma-j \infty}^{\sigma+j \infty} X(s) e^{s t} d s=\frac{1}{2 \pi j} \int_{\sigma-j w}^{\sigma+j w} X(s) e^{s t} d s
$$

- s is a complex variable that is defined as $s=\sigma+\mathrm{j} w$.
- σ fixed and ω varying from $-\infty$ to ∞.
-we usually use table of Laplace transform pairs to perform Inverse
Laplace Transform.

-Example 4

-Compute $x(t)$ if $X(s)=3 / s^{2}$

$$
\begin{aligned}
x(t) & =L^{-1}[X(s)]=L^{-1}\left[\frac{3}{s^{2}}\right] \\
& =3 L^{-1}\left[\frac{1}{s^{2}}\right]=3 t
\end{aligned}
$$

-Compute $\mathrm{f}(\mathrm{t})$ if $\mathrm{F}(\mathrm{s})=\frac{2 s}{s^{2}+10}$

$$
\mathrm{f}(\mathrm{t})=2 \cos \sqrt{10} t
$$

-By taking the inverse Laplace transform, the system impulse response $h(t)$ is obtained from $H(s)$.
-If the following transfer function is used as example:

$$
H(s)=\frac{Y(s)}{X(s)}=\frac{1}{s^{2}+a(1) s+a(2)}=\frac{1}{(s+\alpha(0))(s+\alpha(1))}
$$

- The application of the partial fraction expansion results in:

$$
H(s)=\frac{1}{(s+\alpha(0))(s+\alpha(1))}=\frac{A_{0}}{(s+\alpha(0))}+\frac{A_{1}}{(s+\alpha(1))}
$$

- From Laplace Transform pairs, the system impulse response, $h(t)$ is:

$$
h(t)=A_{0} e^{-\alpha(0) t}+A_{1} e^{-\alpha(1) t}
$$

- If the poles are complex conjugate pole pairs, then the transfer function is:

$$
H(s)=\frac{Y(s)}{X(s)}=\frac{1}{s^{2}+a(1) s+a(2)}=\frac{1}{(s+\alpha+j \beta)(s+\alpha-j \beta)}
$$

-By applying the partial fraction expansion, the transfer function is:

$$
H(s)=\frac{1}{(s+\alpha+j \beta)(s+\alpha-j \beta)}=\frac{A_{0}}{(s+\alpha+j \beta)}+\frac{A_{1}}{(s+\alpha-j \beta)}
$$

- The resulting system impulse response is:

$$
h(t)=A_{0} e^{-\alpha t} e^{j \beta t}+A_{1} e^{-\alpha t} e^{-j \beta t}
$$

-Example 5

A system is defined by a transfer function

$$
H(s)=\frac{1}{(s+1)}
$$

If the input to the system is

$$
\begin{aligned}
x(t) & =e^{-0.1 t} & & t \geq 0 \\
& =0 & & t<0
\end{aligned}
$$

Partial fraction expansion
Output of the system is

$$
\begin{aligned}
& Y(s)=H(s) X(s)=\left(\frac{1}{s+1}\right)\left(\frac{1}{s+0.1}\right)=\frac{1}{(s+1)(s+0.1)}=\frac{A_{o}}{s+1}+\frac{A_{1}}{s+0.1} \\
& Y(s)=\frac{-1.1}{s+1}+\frac{1.1}{s+0.1} \longrightarrow \begin{aligned}
y(t) & =-1.1 e^{-1 t}+1.1 e^{-0.1 t} \\
& =0
\end{aligned} \\
& \\
&
\end{aligned} \begin{aligned}
& t \geq 0 \\
&
\end{aligned}
$$

-Example 6

A transfer function of a system that has a complex conjugate pole pair is defined as:

$$
H(s)=\frac{1}{(s+0.5+j 2 \pi 100)(s+0.5-j 2 \pi 100)}
$$

Partial fraction

Solving the partial fraction expansion results in:

$$
\begin{aligned}
h(t) & =\left(-\frac{1}{j 4 \pi 100}\right) e^{-0.5 t} e^{-j 2 \pi 100 t}+\left(\frac{1}{j 4 \pi 100}\right) e^{-0.5 t} e^{j 2 \pi 100 t} \\
& =\left(\frac{1}{2 \pi 100}\right) e^{-0.5 t} \sin (2 \pi 100 t) \\
& =0
\end{aligned} \quad t \geq 0
$$

RELATIONSHIIP BETWEEN LAPLACE AND FOURIER TRANSFORM

- The Fourier transform can be obtained from the Laplace transform by making the substitution $s=j w=j 2 \pi f$.
- A transfer function is

$$
H(s)=\frac{1}{\left(s^{2}+s+(2 \pi 100)^{2}\right)}
$$

By making the substitution $s=j w=j 2 \pi f$, the Fourier transform of the transfer function is

$$
H(f)=\frac{1}{\left(-(2 \pi f)^{2}+j 2 \pi f+(2 \pi 100)^{2}\right)}=\frac{1}{\left(\left((2 \pi 100)^{2}-(2 \pi f)^{2}\right)+j 2 \pi f\right)}
$$

RELATIONSHIIP BETWEEN LAPLACE AND FOURIER TRANSFORM

- The Fourier transform when defined in terms of the magnitude and phase is

$$
|H(f)|=\frac{1}{\sqrt{\left((2 \pi 100)^{2}-(2 \pi f)^{2}\right)^{2}+(2 \pi f)^{2}}} \quad \text { Magnitude }
$$

$$
\phi(f)=-\tan ^{-1}\left(\frac{2 \pi f}{(2 \pi 100)^{2}-(2 \pi f)^{2}}\right)
$$

Phase

FREQUENCY RESPONSE OF TRANSFER FUNCTION

Circuit Analysis using Laplace Transform

a) Resistor

b) Inductor

Time domain

S-domain

$$
\begin{aligned}
\mathrm{v}(\mathrm{t})=\mathrm{L} \frac{\mathrm{di}(\mathrm{t})}{\mathrm{dt}} \Leftrightarrow \mathrm{~V}(\mathrm{~s}) & =\mathrm{sLI}(\mathrm{~s})-\mathrm{Li}\left(0^{-}\right) \\
\mathrm{I}(\mathrm{~s}) & =\frac{1}{\mathrm{sL}} \mathrm{~V}(\mathrm{~s})+\frac{1}{\mathrm{~s}} \mathrm{i}\left(0^{-}\right)
\end{aligned}
$$

b) Capacitor

$$
\begin{aligned}
\mathrm{v}(\mathrm{t})=\frac{1}{\mathrm{C}} \int \mathrm{i}(\mathrm{t}) \mathrm{dt} & \Leftrightarrow & \mathrm{~V}(\mathrm{~s})=\frac{1}{\mathrm{sC}} \mathrm{I}(\mathrm{~s})+\frac{\mathrm{v}\left(0^{-}\right)}{\mathrm{s}} \\
i(t)=C \frac{d v(t)}{d t} & & \mathrm{I}(\mathrm{~s})=\mathrm{sC} \mathrm{~V}(\mathrm{~s})-\mathrm{C} \mathrm{v}\left(0^{-}\right)
\end{aligned}
$$

Example 7

Determine $i(t)$ when switch S in the circuit was closed when $t \geq 0$ s. Given the the start value of $\mathrm{i}(\mathrm{t}), \mathrm{i}\left(0^{-}\right)=5 \mathrm{~A}$.

Solution

The s-domain circuit is:

$$
\begin{aligned}
&(2 s+4) I(s)=\frac{3}{s}+10 \\
& I(s)=\frac{3+10 \mathrm{~s}}{\mathrm{~s}(4+2 \mathrm{~s})} \longrightarrow \quad \text { Inverse laplace transform } \\
& \therefore \quad \mathrm{i}(\mathrm{t})=\underline{0.75 \mathrm{u}(\mathrm{t})+4.25 \mathrm{e}^{-2 \mathrm{t}} \mathrm{u}(\mathrm{t})}
\end{aligned}
$$

Solution

- At $0 \leq t \leq 1$

$$
\begin{array}{rlr}
V c(S) & =\frac{1 / S}{2+1 / S}\left(\frac{5}{S}\right) & A=\left.\frac{2.5}{S+0.5}\right|_{S=0}=5 \\
& =\frac{5}{(2 S+1) S} & B=\left.\frac{2.5}{S}\right|_{S=0.5}=-5 \\
& =\frac{2.5}{S(S+0.5)} & V c(t)=5 u(t)-5 e^{-0.5 t} u(t) \\
& =\frac{A}{S}+\frac{B}{S+0.5} &
\end{array}
$$

- At $t \geq 1$

$$
\begin{aligned}
V c(1-) & =5 u(t)-5 e^{-0.5 t} u(t) \\
& =5-5 e^{-0.5} \\
& =1.967 V
\end{aligned}
$$

$$
I c(S)=\frac{4}{4+1 / S}(1.967)
$$

$$
=\frac{S(1.967)}{S+0.25}
$$

$$
V c(S)=\frac{I c(S)}{S}
$$

$$
=\frac{1.967}{S+0.25}
$$

- For $\mathrm{t}^{\prime} \geq 1$ where $\mathrm{t}^{\prime}=\mathrm{t}-1$

$$
\begin{aligned}
& V c\left(t^{\prime}\right)=1.967 e^{-0.25 t^{\prime}} u(t) \\
& V c(t-1)=1.967 e^{-0.25(t-1)} u(t-1)
\end{aligned}
$$

